题面
Sol
路径第\(k\)大
无解直接判断就好了 然后整体二分,加上树链剖分+树状数组统计# include# define RG register# define IL inline# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;const int _(2e5 + 5);IL ll Input(){ RG ll x = 0, z = 1; RG char c = getchar(); for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * z;}int size[_], fa[_], deep[_], top[_], son[_], dfn[_], Index;int fst[_], nxt[_], to[_], cnt, n, c[_];IL void Modify(RG int x, RG int v){ for(; x <= n; x += x & -x) c[x] += v;}IL int Query(RG int x){ RG int ret = 0; for(; x; x -= x & -x) ret += c[x]; return ret;}IL void Add(RG int u, RG int v){ nxt[cnt] = fst[u]; to[cnt] = v; fst[u] = cnt++;}IL void Dfs1(RG int u){ size[u] = 1; for(RG int e = fst[u]; e != -1; e = nxt[e]){ if(size[to[e]]) continue; fa[to[e]] = u; deep[to[e]] = deep[u] + 1; Dfs1(to[e]); size[u] += size[to[e]]; if(size[to[e]] > size[son[u]]) son[u] = to[e]; }}IL void Dfs2(RG int u, RG int Top){ dfn[u] = ++Index; top[u] = Top; if(son[u]) Dfs2(son[u], Top); for(RG int e = fst[u]; e != -1; e = nxt[e]) if(!dfn[to[e]]) Dfs2(to[e], to[e]);}IL int LCA(RG int u, RG int v){ while(top[u] ^ top[v]){ if(deep[top[u]] > deep[top[v]]) swap(u, v); v = fa[top[v]]; } return deep[u] > deep[v] ? v : u;}IL int Calc(RG int u, RG int v){ RG int ret = 0; while(top[u] ^ top[v]){ if(deep[top[u]] > deep[top[v]]) swap(u, v); ret += Query(dfn[v]) - Query(dfn[top[v]] - 1); v = fa[top[v]]; } if(deep[u] > deep[v]) swap(u, v); ret += Query(dfn[v]) - Query(dfn[u] - 1); return ret;}int m, tot, ans[_], Q, val[_];struct Data{ int id, x, y, k, op;} q[_], q1[_], q2[_];IL void Solve(RG int l, RG int r, RG int L, RG int R){ if(L > R) return; if(l == r){ for(RG int i = L; i <= R; ++i) if(q[i].id && ans[q[i].id] != -1) ans[q[i].id] = l; return; } RG int mid = (l + r) >> 1, t1 = 0, t2 = 0; for(RG int i = L; i <= R; ++i) if(q[i].id){ RG int s = Calc(q[i].x, q[i].y); if(s >= q[i].k) q2[++t2] = q[i]; else q[i].k -= s, q1[++t1] = q[i]; } else{ if(q[i].y > mid) q2[++t2] = q[i], Modify(dfn[q[i].x], q[i].op); else q1[++t1] = q[i]; } for(RG int i = L; i <= R; ++i) if(!q[i].id && q[i].y > mid) Modify(dfn[q[i].x], -q[i].op); for(RG int i = L, j = 1; j <= t1; ++i, ++j) q[i] = q1[j]; for(RG int i = L + t1, j = 1; j <= t2; ++i, ++j) q[i] = q2[j]; Solve(l, mid, L, L + t1 - 1); Solve(mid + 1, r, L + t1, R);}int main(RG int argc, RG char* argv[]){ tot = n = Input(); m = Input(); RG int mx = 0; for(RG int i = 1; i <= n; ++i){ q[i].x = i, q[i].y = val[i] = Input(), q[i].op = 1; fst[i] = -1; mx = max(mx, val[i]); } for(RG int i = 1, x, y; i < n; ++i) x = Input(), y = Input(), Add(x, y), Add(y, x); Dfs1(1); Dfs2(1, 1); for(RG int i = 1; i <= m; ++i){ RG int tk = Input(), tx = Input(), ty = Input(); if(tk){ RG int lca = LCA(tx, ty); ++Q; RG int len = deep[tx] + deep[ty] - 2 * deep[lca] + 1; if(tk > len) ans[Q] = -1; q[++tot] = (Data){Q, tx, ty, tk, 0}; } else{ q[++tot] = (Data){0, tx, val[tx], 0, -1}; q[++tot] = (Data){0, tx, val[tx] = ty, 0, 1}; mx = max(mx, ty); } } Solve(0, mx, 1, tot); for(RG int i = 1; i <= Q; ++i) if(ans[i] == -1) puts("invalid request!"); else printf("%d\n", ans[i]); return 0;}